PI-88 and Novel Heparan Sulfate Mimetics Inhibit Angiogenesis

Vito Ferro, Ph.D.,1 Keith Dredge, Ph.D.,1 Ligong Liu, Ph.D.,1 Edward Hammond, Ph.D.,1 Ian Bytheway, Ph.D.,1 Caiping Li, Ph.D.,1 Ken Johnstone, Ph.D.,1 Tomislav Karoli, Ph.D.,1 Kat Davis, B.Sc.,1 Elizabeth Copeman, B.Biotech.,1 and Anand Gautam, Ph.D.1

ABSTRACT

The heparan sulfate (HS) mimic PI-88 is a promising inhibitor of tumor growth and metastasis expected to commence phase III clinical evaluation in 2007 as an adjuvant therapy for postresection hepatocellular carcinoma. Its anticancer properties are attributed to inhibition of angiogenesis via antagonism of the interactions of angiogenic growth factors and their receptors with HS. It is also a potent inhibitor of heparanase, an enzyme that plays a key role in both metastasis and angiogenesis. A series of PI-88 analogs have been prepared with enhanced chemical and biological properties. The new compounds consist of single, defined oligosaccharides with specific modifications designed to improve their pharmacokinetic properties. These analogs all inhibit heparanase and bind to the angiogenic fibroblast growth factor 1 (FGF-1), FGF-2, and vascular endothelial growth factor with similar affinity to PI-88. However, compared with PI-88, some of the newly designed compounds are more potent inhibitors of growth factor–induced endothelial cell proliferation and of endothelial tube formation on Matrigel. Representative compounds were also tested for antiangiogenic activity in vivo and were found to reduce significantly blood vessel formation. Moreover, the pharmacokinetic profile of several analogs was also improved, as evidenced primarily by lower clearance in comparison with PI-88. The current data support the development of HS mimetics as potent antiangiogenic anticancer agents.

KEYWORDS: PI-88, heparan sulfate mimetics, heparanase inhibitors, angiogenesis inhibitors, sulfated oligosaccharides

To grow and metastasize, tumors are critically dependent on angiogenesis1,2 (i.e., the growth of new blood vessels from pre-existing ones surrounding a tumor), and its inhibition is now well established as an important therapeutic strategy for cancer patients.3 Cell surface/extracellular matrix (ECM) heparan sulfate (HS) glycosaminoglycans are complex polysaccharides that are ubiquitous in nature and play important roles in the regulation of several aspects of cancer biology, including angiogenesis, tumor progression, and metastasis.4,5 The use of HS mimetics to modulate these processes is therefore a promising approach for new cancer therapeutics.4,6,7 This is illustrated by the sulfated oligosaccharide PI-88, which is progressing through clinical development as an antiangiogenic anticancer agent. The development of newly designed HS mimetics with enhanced properties is also discussed.
The sulfated oligosaccharide mixture known as PI-88 (1; Fig. 1)\(^8\) is an angiogenesis inhibitor currently undergoing phase II clinical trials in patients with advanced malignancies.\(^9,10\) PI-88 inhibits angiogenesis\(^8,11,12\) by blocking the interactions of angiogenic growth factors (principally fibroblast growth factor 1 [FGF-1], FGF-2, and vascular endothelial growth factor [VEGF]) and their receptors with HS.\(^8,9\) In addition, PI-88 is a potent inhibitor of heparanase,\(^8\) an endoglucuronidase that cleaves the HS side chains of proteoglycans that are a major component of the ECM. Heparanase plays a key role in both metastasis and angiogenesis by participating in the degradation of the ECM, vascular remodeling, and the release of HS-bound angiogenic growth factors from the ECM.\(^13,14\) PI-88 also stimulates the release of tissue factor pathway inhibitor, an endogenous antiangiogenic protein.\(^15\)

PI-88 is prepared\(^16\) by exhaustive sulfonation of the oligosaccharide phosphate fraction obtained from mild acid-catalyzed hydrolysis of the extracellular phosphomannan produced by the yeast Pichia holstii NRRL Y-2448.\(^17\) This mixture is composed primarily of the phosphorylated penta- (2) and tetrasaccharides (3), which account for \(\sim 60\) and 30\%, respectively, of the total oligosaccharide content; the remaining 10\% comprises phosphorylated di- to hexasaccharides.\(^18\)

PI-88 PRECLINICAL AND CLINICAL STUDIES
PI-88 was identified as a potent inhibitor of both in vitro angiogenesis and heparanase activity\(^8\) by screening libraries of sulfated oligosaccharide HS mimetics. Subsequent in vivo studies confirmed its capacity to inhibit tumor growth, metastasis, and angiogenesis. For example, PI-88 inhibited the growth of invasive rat mammary adenocarcinoma cells by \(\sim 50\%\) and reduced lymph node and blood-borne metastases.\(^8\) PI-88 also diminished the malignant cell load in rodent models of human myeloid leukemia.\(^19\) More recently, PI-88 showed significant effects in distinct stages of tumorigenesis in the RIP1-Tag2 transgenic mouse model of pancreatic islet \(\beta\)-cell carcinoma\(^1,12\), reducing the number of early progenitor lesions and inhibiting tumor growth at later stages. These responses were associated with decreased cell proliferation, increased apoptosis, inhibition of angiogenesis, and a significant reduction in the number of invasive carcinomas.

Preclinical data supported the decision to test PI-88 in the various clinical trials\(^20,21\) summarized in Table 1. In early trials PI-88 (as a solution in normal saline) was administered by intravenous infusion, although it is now administered by subcutaneous injection. As indicated in Table 1, PI-88 has been administered to close to 400 subjects (including healthy volunteers) as both a single agent and in combination with standard chemotherapy for a range of different cancers. These clinical studies have demonstrated that PI-88 has an excellent safety and tolerability profile, with few serious adverse events reported. Mild anticoagulation effects have been reported in all patients; however, the dose-limiting toxicity is immune-mediated thrombocytopenia.\(^20,25\) Immune-mediated thrombocytopenia has been observed in \(\sim 5\%\) of patients, usually occurs
during the first treatment cycle, and appears to be dose related. Platelet counts return to normal upon cessation of PI-88 treatment.

PI-88 also has shown evidence of patient benefit. For example, in a phase I trial in patients with advanced solid tumors, one patient with melanoma had a partial response, which was maintained for > 50 months, and nine patients, including five with melanoma, had stable disease for ≥ 6 months. These positive outcomes supported the commencement of a phase II trial in advanced melanoma patients as a single agent and subsequently in metastatic melanoma in combination with chemotherapy (dacarbazine). Also of note is the current phase II trial in postresection hepatocellular carcinoma, in which PI-88 is administered as an adjuvant therapy. It is this indication with high unmet need that has been targeted for phase III trials to commence in 2007.

NEW HS MIMETICS AS ANGIOGENESIS INHIBITORS

Given the encouraging clinical progress of PI-88 as an anticancer therapy, the design and synthesis of PI-88 analogs with improved properties was undertaken. PI-88 is a complex mixture of oligosaccharides and this presents major challenges in characterization, assay development, interpretation of structure–activity relationships, and in ensuring batch-to-batch consistency during manufacture. HS mimetics that are single chemical entities, or at least based on a single carbon backbone, would address the mixture problems. (It is well established that sulfonation of tri- or larger oligosaccharides rarely goes to completion and instead gives a randomly, but reproducibly, highly sulfated mixture. See Karoli et al and references cited therein.)

Previous studies of derivatives of the individual components of PI-88 had established that the pentasaccharide and tetrasaccharide components are the most biologically active. New compound design was thus based on anomerically pure (α anomer only), single pentasaccharide glycosides in which the reducing end phosphate has been replaced by sulfate for ease of synthesis and because it has minimal impact on biological activity (Fig. 1; generic structure 6). The aglycones (Fig. 1; R2 = primarily lipophilic groups) were chosen specifically to improve the pharmacokinetic properties and thus bioavailability.

The new compounds were prepared conveniently in four or five steps from the oligosaccharides 4 or 5, which are themselves amenable to total synthesis using readily available monosaccharide building blocks (unpublished results). The compounds were assessed initially for their affinity for the angiogenic growth factors FGF-1, FGF-2, and VEGF, and for their ability to inhibit heparanase activity. In general, most compounds displayed similar, and in some cases slightly better, activity to PI-88 in these assays (Table 2). Pharmacokinetic studies of the initial series of compounds using radiolabeled material showed that the addition of a suitable aglycone, especially a lipophilic one, could have a favorable effect on the pharmacokinetic profile. For example, the plasma clearance of compound 7 (PG501) was approximately three times slower than that of PI-88 (Table 2). Pharmacokinetic assessments of more promising compounds are being conducted in parallel with efficacy experiments in mouse tumor models (see below and are ongoing.

Following these positive findings, additional compounds were synthesized and tested. Cell-based assays indicative of antiangiogenic activity were added to the suite of tests. In human umbilical vein endothelial

Table 1 Summary of PI-88 Clinical Trials

<table>
<thead>
<tr>
<th>Phase</th>
<th>Indication</th>
<th>Status</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Healthy volunteers (IV)</td>
<td>Completed</td>
<td>24</td>
</tr>
<tr>
<td>I</td>
<td>Healthy volunteers (SC crossover)</td>
<td>Completed</td>
<td>22</td>
</tr>
<tr>
<td>I</td>
<td>Advanced cancers (IV)</td>
<td>Completed</td>
<td>14</td>
</tr>
<tr>
<td>I</td>
<td>Advanced cancers (IV), Asian population</td>
<td>Completed</td>
<td>9</td>
</tr>
<tr>
<td>I</td>
<td>Advanced cancers</td>
<td>Completed</td>
<td>42</td>
</tr>
<tr>
<td>Ib</td>
<td>Advanced cancers (combination)*</td>
<td>Completed</td>
<td>16</td>
</tr>
<tr>
<td>II</td>
<td>Multiple myeloma</td>
<td>Completed</td>
<td>19</td>
</tr>
<tr>
<td>II</td>
<td>Advanced melanoma</td>
<td>Completed</td>
<td>44</td>
</tr>
<tr>
<td>II</td>
<td>Advanced prostate cancer (combination)*</td>
<td>Ongoing</td>
<td>Up to 90</td>
</tr>
<tr>
<td>II</td>
<td>Metastatic melanoma (combination)*</td>
<td>Ongoing</td>
<td>Up to 118</td>
</tr>
<tr>
<td>II</td>
<td>Advanced lung cancer (NSCLC; combination)*</td>
<td>Ongoing</td>
<td>99</td>
</tr>
<tr>
<td>II</td>
<td>Post-resection hepatocellular carcinoma*</td>
<td>Ongoing</td>
<td>172</td>
</tr>
</tbody>
</table>

*In combination with docetaxel.
†First-line treatment in combination with dacarbazine.
‡Adjuvant therapy.
§PI-88 administered as a SC injection unless otherwise indicated.
IV, intravenous; SC, subcutaneous.
cell (HUVEC) and dermal human microvascular endothelial cell (dHMVEC) proliferation assays, all compounds potently inhibited FGF-2–induced endothelial cell proliferation. However, inhibitory activity against FGF-1 or VEGF–induced HUVEC proliferation was compound specific (i.e., although PI-88 and some of the compounds had poorer activity against these growth factors, others exhibited potent inhibitory activity similar to those generated in the FGF-2–induced HUVEC proliferation assays; Fig. 2). Endothelial cell tube formation on Matrigel using either HUVEC or dHMVEC was potently inhibited by several compounds in comparison to PI-88 which only had modest activity in this assay (Fig. 3).

Two representative compounds 7 (PG501) and 8 (PG500) together with PI-88 were chosen for evaluation in two in vivo mouse models of angiogenesis: the AngioChamber and AngioSponge (vivoPharm Pty,墨尔本，澳大利亚). The inhibitory effect of PI-88 and PG500 series compounds on endothelial cell tube formation in the in vitro Matrigel assay. Human umbilical vein endothelial cells were plated onto 96-well plates precoated with Matrigel and a range of concentrations of each compound (0, 10, 50, and 100 μM) and cultured for 24 hours. Similar data were obtained using dermal human microvascular endothelial cells. Tube formation was examined by phase-contrast microscopy and images were collected using an Olympus C5050 digital camera. Tube formation inhibition was quantitated manually from images by recording the total number of nodes connecting three or more tubules. Results are expressed as percentage inhibition compared with control.

Table 2 Heparanase Inhibitory Activity In Vitro, Angiogenic Growth Factor Binding (surface plasmon resonance solution affinity assay), and Selected Pharmacokinetic Parameters in Male Sprague-Dawley Rats for PI-88 and Selected Compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>Kᵢ Heparanase (nM)</th>
<th>Kᵢ GFG-1 (nM)</th>
<th>Kᵢ GFG-2 (nM)</th>
<th>Kᵢ VEGF (nM)</th>
<th>t½ (rat) (h)</th>
<th>CL (rat) (mL/h/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI-88 (1)*</td>
<td>240</td>
<td>0.24</td>
<td>130</td>
<td>1.3</td>
<td>0.83</td>
<td>250</td>
</tr>
<tr>
<td>PG501 (7)*</td>
<td>310</td>
<td>0.14</td>
<td>68</td>
<td>1.5</td>
<td>1.1</td>
<td>84</td>
</tr>
<tr>
<td>PG500 (8)*</td>
<td>340</td>
<td>0.14</td>
<td>86</td>
<td>1.7</td>
<td>0.83</td>
<td>199</td>
</tr>
<tr>
<td>PG517</td>
<td>280</td>
<td>0.27</td>
<td>125</td>
<td>23</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PG518</td>
<td>330</td>
<td>0.11</td>
<td>123</td>
<td>21</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PG522</td>
<td>345</td>
<td>0.06</td>
<td>81</td>
<td>1.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PG524</td>
<td>310</td>
<td>0.24</td>
<td>125</td>
<td>11</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

*Data from Karoli et al. 25

It is well established that sulfonation of tri- or larger oligosaccharides rarely goes to completion and instead gives a randomly, but reproducibly, highly sulfated mixture. Assays were performed as described by Karoli et al. 25

Kᵢ, ??_; Kᵢ, ??_; FGF, fibroblast growth factor; VEGF, vascular endothelial growth factor; t½, ??_; CL, Clearance.

Figure 2 Concentration that inhibits 50%([IC₅₀](#)) values of PI-88 and PG500 series compounds in the growth factor–induced human umbilical vein endothelial cell proliferation assay. Cells were coincubated for 72 hours with either fibroblast growth factor 1 (FGF-1), FGF-2, or vascular endothelial growth factor (VEGF) in the presence of a control or multiple concentrations of compound (5 to 50 μM). Similar data were obtained using dermal human microvascular endothelial cells. Proliferation was measured using a nonradioactive colorimetric method, CellTiter96 AQueous Assay from Promega.

Figure 3 The inhibitory effect of PI-88 and PG500 series compounds on endothelial cell tube formation in the in vitro Matrigel assay. Human umbilical vein endothelial cells were plated onto 96-well plates precoated with Matrigel and a range of concentrations of each compound (0, 10, 50, and 100 μM) and cultured for 24 hours. Similar data were obtained using dermal human microvascular endothelial cells. Tube formation was examined by phase-contrast microscopy and images were collected using an Olympus C5050 digital camera. Tube formation inhibition was quantitated manually from images by recording the total number of nodes connecting three or more tubules. Results are expressed as percentage inhibition compared with control.

Figure 4 AngioChamber assay: mean capsule wet weights (milligrams). AngioSponge assay: mean CD31 counts per view field. Test compounds were dosed at 30 mg/kg/day. (A) Vehicle control (no fibroblast growth factor [FGF]-2); (B) vehicle control + FGF-2; (C) PI-88 + FGF-2; (D) PG500 + FGF-2; (E) PG501 + FGF-2; (F) positive control + FGF-2.
Q10 Ltd., Adelaide, Australia(Q10) assays. The mice were treated with twice-daily subcutaneous injections at 15 mg/kg, a dose selected on the basis of extensive preclinical experience with PI-88. In the AngioChamber assay,27 angiogenesis is induced by FGF-2 addition to a subcutaneously implanted, perforated polytetrafluoroethylene Q11 chamber and results in the formation of a fibrous capsule around the chamber. Efficacy is assessed by measurement of capsule wet weight and visual observation in situ. As shown in Fig. 4, all test compounds showed significant inhibition of FGF-2–induced fibrous capsule formation.

In the AngioSponge assay,28 a hydrated gelfoam impregnated with FGF-2 and agarose is implanted subcutaneously, resulting in slow release of FGF-2, which stimulates angiogenesis. Angiogenesis is measured by blood vessel counting after CD31 immunostaining, and blood vessel morphology can be assessed qualitatively. As shown in Fig. 4, all test compounds inhibited angiogenesis significantly compared with both the positive control and the control without added FGF-2. PG500 and PG501Q12 both showed less intense CD31 staining, with most blood vessels having no lumen.

The positive results in both cell-based assays and in vivo angiogenesis assays, coupled with the improvements seen in pharmacokinetic parameters, have led to the testing of selected compounds in mouse tumor models, supported by pharmacokinetic studies. It is anticipated that these ongoing studies will help in the selection of new HS mimetic clinical candidate(s) for cancer.

CONCLUSIONS

The HS mimetic angiogenesis inhibitor PI-88 has demonstrated a good safety and tolerability profile and clinical benefit to patients with various cancers. It is set to commence phase III trials as an adjuvant therapy in postresection hepatocellular carcinoma patients. A new series of HS mimetic PI-88 analogs has been synthesized with improved chemical and biological properties. The new compounds consist of single, defined oligosaccharides with specific modifications designed to improve their pharmacokinetic properties. Some compounds in this series are significantly more potent than PI-88 in cell-based assays. Moreover, representative compounds have demonstrated potent antiangiogenic activity in vivo and an improved pharmacokinetic profile. The current data support the additional development of this series of HS mimetics as potent antiangiogenic anticancer agents.

ACKNOWLEDGMENTS

We thank Dr. Ralf Brandt (\textit{vivo}Pharm Pty Ltd, Adelaide) for the AngioChamber and AngioSponge assays.

REFERENCES

Q11

Q12

Q13
19. Iversen PO, Sorensen DR, Benestad HB. Inhibitors of angiogenesis selectively reduce the malignant cell load in rodent models of human myeloid leukemias. Leukemia 2002;16:376–381

Author Query Form (STH/01317)

Special Instructions: Author please write responses to queries directly on proofs and then return back.

Q1: AU: Please verify phrase. Do you mean pancreatic islet B-cell carcinoma?
Q2: AU: Original reference 27 was deleted and inserted into text, per journal style. References were renumbered accordingly.
Q3: AU: Please insert exact section heading rather than "below" for cross reference.
Q4: AU: Please define all parameters in footnote and verify definitions as set.
Q5: AU: Please supply name and location of manufacturer (city/state or city/country if not U.S.).
Q6: AU: IC₅₀ OK as defined?
Q7: AU: Please define in all legends, if applicable.
Q8: AU: Please supply city/state or city/country (if not US) location.
Q9: AU: Please supply city/state or city/country (if not US) location.
Q10: AU: Company name and location correct as inserted?
Q11: AU: Okay with trade name as replaced with generic name?
Q12: AU: Please define, if applicable.
Q13: AU: Please update publication data, including page range, if available.
Q14: AU: Please supply exact dates of conference.
Q15: AU: Please supply exact dates of conference.
Q16: AU: Does "old" stand for Queensland?
Instructions to Contributors

Dear Contributor:

Enclosed in this document please find the page proofs, copyright transfer agreement (CTA), and offprint order form for your article in the *Seminars in Thrombosis and Hemostasis*, Volume 33, Number 5, 2007. Please print this document and complete and return the CTA and offprint form, along with corrected proofs, within 72 hours (3 business days).

1) Please read proofs carefully for typographical and factual errors only; mark corrections in the margins of the proofs in pen. Answer (on the proofs) all editor’s queries indicated in the margins of the proofs. Check references for accuracy. Please check on the bottom of the 1st page of your article that your titles and affiliations are correct. Avoid elective changes, as these are costly and time consuming and will be made at the publisher’s discretion.

2) Please pay particular attention to the proper placement of figures, tables, and legends. Provide copies of any formal letters of permission that you have obtained.

3) Please return the corrected proofs, signed copyright transfer agreement, and your offprint order form, with color prints of figures, if you received any.

4) As a contributor to this journal you will receive one copy of the journal, at no charge.

- If you wish to order offprints or e-prints, please circle the quantity required (left column) and the number of pages in your article. If you wish to order additional copies of the journal please enter the number of copies on the indicated line.
- If you do not want to order offprints or journals simply put a slash through the form, but please return the form.

Please send all materials back via overnight mail, within 72 hours of receipt, to:

Xenia Golovchenko
Production editor
Thieme Medical Publishers
77 Gregory Blvd.
Norwalk, CT 06855
Tel: 845-548-8127
Fax: +1 (203) 857 4996
E-mail: xeniag@optonline.net

Please do not return your materials to the editor, or the compositor.

Please note: Due to a tight schedule, if the publisher does not receive the return of your article within 7 business days of the mail date (from the compositor), the publisher reserves the right to proceed with publication without author changes. Such proofs will be proofread by the editor and the publisher.

Thank you for your contribution to this journal.
Xenia Golovchenko, Production Editor, Journal Production Department
Thieme Medical Publishers, Inc.
Thieme Medical Publishers, Inc. (the “Publisher”) will be pleased to publish your article (the “Work”) entitled _____________________________ in the Seminars in Thrombosis and Hemostasis, Volume 33, Number 5, 2007.

The undersigned Author(s) hereby assigns to the Publisher all rights to the Work of any kind, including those rights protected by the United States Copyright laws.

The Author(s) will be given permission by the Publisher, upon written request, to use all or part of the Work for scholarly or academic purposes, provided lawful copyright notice is given.

If the Work, subsequent to publication, cannot be reproduced and delivered to the Author(s) by the publisher within 60 days of a written request, the Author(s) is given permission to reprint the Work without further request.

The Publisher may grant third parties permission to reproduce all or part of the Work. The Author(s) will be notified as a matter of courtesy, not as a matter of contract. Lawful notice of copyright always will be given.

Check appropriate box below and affix signature.

[] I Sign for and accept responsibility for transferring copyright of this article to Thieme Medical Publishers, Inc. on behalf of any and all authors.

Author’s full name, degrees, professional title, affiliation, and complete address:

<table>
<thead>
<tr>
<th>Author’s printed name, degrees</th>
<th>Professional title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete professional address

<table>
<thead>
<tr>
<th>Author’s signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[] I prepared this article as part of my official duties as an employee of the United States Federal Government. Therefore, I am unable to transfer rights to Thieme Medical Publishers, Inc.

<table>
<thead>
<tr>
<th>Author’s signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Order Form for Offprints and additional copies of the Seminars in Thrombosis and Hemostasis
(Effective October 2005)

Please circle the cost of the quantity/page count you require (orders must be in increments of 100)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>1 to 4</th>
<th>5 to 8</th>
<th>9 to 12</th>
<th>13 to 16</th>
<th>17 to 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>$198</td>
<td>$317</td>
<td>$440</td>
<td>$578</td>
<td>$693</td>
</tr>
<tr>
<td>200</td>
<td>$277</td>
<td>$444</td>
<td>$615</td>
<td>$809</td>
<td>$970</td>
</tr>
<tr>
<td>300</td>
<td>$356</td>
<td>$570</td>
<td>$791</td>
<td>$1,041</td>
<td>$1,247</td>
</tr>
<tr>
<td>400</td>
<td>$396</td>
<td>$634</td>
<td>$879</td>
<td>$1,156</td>
<td>$1,386</td>
</tr>
<tr>
<td>500</td>
<td>$446</td>
<td>$713</td>
<td>$989</td>
<td>$1,301</td>
<td>$1,559</td>
</tr>
<tr>
<td>1000</td>
<td>$792</td>
<td>$1,267</td>
<td>$1,758</td>
<td>$2,313</td>
<td>$2,772</td>
</tr>
</tbody>
</table>

Volume/Issue #: ___________________________ Page Range (of your article): ___________________________

Article Title: ___________________________

MC/Visa/AmEx No: _________________ Exp. Date: _________________

Signature: ___________________________

Name: ___________________________

Address: ___________________________

City/State/Zip/Country: ___________________________

Corresponding author will receive one complimentary copy of the issue in which the manuscript is published.

Number of additional copies of the journal, at the discounted rate of $20.00 each: ___________________________

Notes
1. The above costs are valid only for orders received before publication of the issue. Please return the completed form, even if your institution intends to send a Purchase Order (the P.O. may sometimes be supplied after the issue has been printed).

2. Orders from outside the U.S. must be accompanied by payment.

3. A shipping charge will be added to the above costs.

4. Reprints are printed on the same coated paper as the journal and side-stapled.

5. For larger quantities or late orders, please contact reprints dept.

 Phone: +1(212) 584-4662
 Fax: +1(212) 947-1112
 E-mail: reprints@thieme.com

As an added benefit to all contributing authors, a discount is offered on all Thieme books.
See below for details or go to www.thieme.com
As a Thieme author you are entitled to a **25% discount** for new books and a **35% discount** for *forthcoming* books.

We selected two books that might be of interest for you:

new! 25%

Thurlbeck's Pathology of the Lung

3rd Edition
Andrew M. Churg, M.D. Ph. D.
Professor of Pathology, University of British Columbia; Pathologist, Vancouver Hospital & Health Sciences Center, Vancouver, BC, Canada

Thurlbeck's cornerstone textbook and reference on pulmonary pathology returns in a brand new edition! Updated with the latest advances in the field, you will save time with all-inclusive coverage of neoplastic, non-neoplastic, infectious, occupational/environmental, and developmental pathologies in one book, learn new insights into the diagnosis of neoplastic and non-neoplastic lung disease, find pertinent information on clinical features, epidemiology, and pathogenetic mechanisms of lung disease and much more! Comprehensive in its scope and authoritative in its scholarship, Thurlbeck's Pathology of the Lung is a virtual one-volume encyclopedia written by a "who's who" list of specialists. It is the one text that no pathologist, pulmonologist, or resident in either specialty can afford to be without.

2005, app.1032 pp., app.1064 illus., hardcover
ISBN 1-58890-288-9

$249.95 $187.46

forthcoming! 35%

Vascular Diagnosis with Ultrasound

Cerebral and Peripheral Vessels
Michael Hennerici, M.D.
Professor and Chairman, Department of Neurology, University of Heidelberg, Mannheim, Germany

Covering the entire venous and body circulation as examined by vascular ultrasound, this unique text/atlas is invaluable for diagnosing arterial and venous disease. It includes comprehensive chapters on vascular ultrasonography in the arteries and veins of the cerebral circulation and the peripheral upper and lower limb circulation, systematic coverage of all available ultrasound technologies, including continuous and pulsed-wave Doppler mode, b-mode, and conventional and color-coded duplex analysis in frequency and amplitude power modes, anatomy and physiology, normal and abnormal findings, test accuracy and sensitivity, pitfalls, and comparison with other diagnostic tests in each vascular region and special, difficult-to-interpret cases discussed in a separate section.

2006, 336 pp., 530 illus., hardcover,
ISBN 1-58890-144-0

$149.95 $97.47

If you want to view more Thieme books, fell free to visit **Thieme Books**

Thieme Author order form

For faster service, call TOLL-FREE 1-800-782-3488 or fax this order form to 212-947-1112

<table>
<thead>
<tr>
<th>Quantity</th>
<th>ISBN (last 4-digits only)</th>
<th>Author/Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subtotal:

Shipping & Handling (Add $7.50 for the first book and $1.00 for each additional book):

NY and PA residents add applicable sales tax:

TOTAL:

Enclosed is my check for $____________________

Charge my:
AMEX MasterCard VISA Discover

Card# ________________ Exp. ______________________

First Name ________________ MI ________________ Last Name ________________

Address __

City/State/Zip ___

Telephone __

FAX ___

e-mail __

Signature ___ EMI-05