University of Heidelberg
Faculty of Medicine Mannheim
University Hospital Mannheim
Genauere MRT-Auswertungen für MS-Patienten durch Künstliche Intelligenz
Modellprojekt mit CKM Beteiligung im Rahmen des Innovationswettbewerbs "KI für KMU" soll die Behandlung von MS-Patienten verbessern more
CKM receives DFG funding for Project "Prediktion von Therapieansprechen und Outcome beim lokal fortgeschrittenen Rektum-Karzinom mittels Radiomics und Deep Learning: eine beispielhafte Anwendung für eine allgemein verwendbare, Deep Learning basierte Prozessierungs-Pipeline für die Bild-Klassifikation" read more.
Alena-Kathrin Schnurr presented on our research on AI in medical imaging @ Research Plus forum
read more

If you have questions concerning a specific publication please use this form with subject 'information about publications' and giving the full citation in the message body.

Collaborate Research Projects
Home > Publications > Abstract >

Evaluation of low and high b-values for the differentiation between pancreatic carcinoma and chronic pancreatitis using Diffusion-Weighted Imaging

M. Klauss, A. Lemke, K. Grünberg, M. Wente, H. Kauczor, S. Delorme, L. Grenacher and B. Stieltjes

Proceedings 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Honolulu,, p.4031

We evaluated the value of different b-values to differentiate between pancreatic carcinoma and chronic pancreatitis using DWI. Nineteen patients received DWI (b= 25-800s/mm2). Histopathologically, 13 had pancreatic carcinoma and 6 chronic pancreatitis. We measured the ADC within the lesions for all b-values. The difference in ADC was tested using a Mann-Whitney-U-Test. The results showed significant differences between the ADCs of pancreatic carcinoma and chronic pancreatitis at low b-values (b=75, 100, 150 and 200). At higher b-values (>300), the differences did not reach significance. In conclusion, for the differentiation between pancreatic carcinoma and chronic pancreatitis, low b-values outperform high b-values.

Contact: Prof. Dr. Frank Zöllner last modified: 30.11.2020
to top of page