University of Heidelberg
Faculty of Medicine Mannheim
University Hospital Mannheim
Genauere MRT-Auswertungen für MS-Patienten durch Künstliche Intelligenz
Modellprojekt mit CKM Beteiligung im Rahmen des Innovationswettbewerbs "KI für KMU" soll die Behandlung von MS-Patienten verbessern more
CKM receives DFG funding for Project "Prediktion von Therapieansprechen und Outcome beim lokal fortgeschrittenen Rektum-Karzinom mittels Radiomics und Deep Learning: eine beispielhafte Anwendung für eine allgemein verwendbare, Deep Learning basierte Prozessierungs-Pipeline für die Bild-Klassifikation" read more.
Alena-Kathrin Schnurr presented on our research on AI in medical imaging @ Research Plus forum
read more

If you have questions concerning a specific publication please use this form with subject 'information about publications' and giving the full citation in the message body.

Collaborate Research Projects
Home > Publications > Abstract >

Sound pressure level prediction of arbitrary sequences

S. Schmitter and L. Schad

Proceedings 16th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Toronto,, p.2965

During MR image acquisition huge sound pressure levels are generated, which can tamper the results of auditory fMRI experiments. A prediction of the generated acoustic noise and its spectrum is necessary in order to adapt auditory stimuli to the scanning sequence. In this work the linearity between gradient amplitude and sound pressure is verified in a wide range between 60 and 115dB. This linearity is exploited in a simulation program which predicts the SPL of an arbitrary sequence. A loud and a silent sequence were exemplarily simulated, the results deviate only 1.8dB from the measured values.

Contact: Prof. Dr. Frank Zöllner last modified: 30.11.2020
to top of page