University of Heidelberg
Faculty of Medicine Mannheim
University Hospital Mannheim
News
These pages are still under constructions and will be available soon! Please check again later!
Note


If you have questions concerning a specific publication please use this form with subject 'information about publications' and giving the full citation in the message body.

Links
Home > Publications > Abstract >

Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations.

M. Davids, B. Guérin, A. Vom Endt, L. Schad and L. Wald

Magn Reson Med, 81 (1), pp.686-701

As gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not directly included in the coil design process. Instead, the PNS characteristics of a gradient are assessed on healthy subjects after prototype construction. We attempt to develop a tool to inform coil design by predicting the PNS thresholds and activation locations in the human body using electromagnetic field simulations coupled to a neurodynamic model. We validate the approach by comparing simulated and experimentally determined thresholds for 3 gradient coils. We first compute the electric field induced by the switching fields within a detailed electromagnetic body model, which includes a detailed atlas of peripheral nerves. We then calculate potential changes along the nerves and evaluate their response using a neurodynamic model. Both a male and female body model are used to study 2 body gradients and 1 head gradient. There was good agreement between the average simulated thresholds of the male and female models with the experimental average (normalized root-mean-square error: <10% and <5% in most cases). The simulation could also interrogate thresholds above those accessible by the experimental setup and allowed identification of the site of stimulation. Our simulation framework allows accurate prediction of gradient coil PNS thresholds and provides detailed information on location and "next nerve" thresholds that are not available experimentally. As such, we hope that PNS simulations can have a potential role in the design phase of high performance MRI gradient coils.

Contact: Dr. Frank Zöllner last modified: 22.01.2019
to top of page