University of Heidelberg
Faculty of Medicine Mannheim
University Hospital Mannheim
These pages are still under constructions and will be available soon! Please check again later!

If you have questions concerning a specific publication please use this form with subject 'information about publications' and giving the full citation in the message body.

Collaborate Research Projects
Home > Publications > Abstract >

Learning-Based Compressive MRI

B. Gozcu, R. Mahabadi, Y. Li, E. Ilicak, T. Cukur, J. Scarlett and V. Cevher

IEEE Trans Med Imaging, 37, pp.1394-1406

In the area of magnetic resonance imaging (MRI), an extensive range of non-linear reconstruction algorithms has been proposed which can be used with general Fourier subsampling patterns. However, the design of these subsampling patterns has typically been considered in isolation from the reconstruction rule and the anatomy under consideration. In this paper, we propose a learning-based framework for optimizing MRI subsampling patterns for a specific reconstruction rule and anatomy, considering both the noiseless and noisy settings. Our learning algorithm has access to a representative set of training signals, and searches for a sampling pattern that performs well on average for the signals in this set. We present a novel parameter-free greedy mask selection method and show it to be effective for a variety of reconstruction rules and performance metrics. Moreover, we also support our numerical findings by providing a rigorous justification of our framework via statistical learning theory.

Contact: Dr. Frank Zöllner last modified: 21.09.2020
to top of page