University of Heidelberg
Faculty of Medicine Mannheim
University Hospital Mannheim
These pages are still under constructions and will be available soon! Please check again later!

If you have questions concerning a specific publication please use this form with subject 'information about publications' and giving the full citation in the message body.

Collaborate Research Projects
Home > Publications > Abstract >

The 'virtual DBS population': five realistic computational models of deep brain stimulation patients for electromagnetic MR safety studies

B. Guerin, M. Iacono, M. Davids, D. Dougherty, L. Angelone and L. Wald

Phys Med Biol, 64, p.035021

We design, develop, and disseminate a 'virtual population' of five realistic computational models of deep brain stimulation (DBS) patients for electromagnetic (EM) analysis. We found five DBS patients in our institution' research patient database who received high quality post-DBS surgery computer tomography (CT) examinations of the head and neck. Three patients have a single implanted pulse generator (IPG) and the two others have two IPGs (one for each lead). Moreover, one patient has two abandoned leads on each side of the head. For each patient, we combined the head and neck volumes into a 'virtual CT', from which we extracted the full-length DBS path including the IPG, extension cables, and leads. We corrected topology errors in this path, such as self-intersections, using a previously published optimization procedure. We segmented the virtual CT volume into bones, internal air, and soft tissue classes and created two-manifold, watertight surface meshes of these distributions. In addition, we added a segmented model of the brain (grey matter, white matter, eyes and cerebrospinal fluid) to one of the model (nickname Freddie) that was derived from a T1-weighted MR image obtained prior to the DBS implantation. We simulated the EM fields and specific absorption rate (SAR) induced at 3 Tesla by a quadrature birdcage body coil in each of the five patient models using a co-simulation strategy. We found that inter-subject peak SAR variability across models was independent of the target averaging mass and equal to  45%. In our simulations of the full brain segmentation and six simplified versions of the Freddie model, the error associated with incorrect dielectric property assignment around the DBS electrodes was greater than the error associated with modeling the whole model as a single tissue class. Our DBS patient models are freely available on our lab website (Webpage of the Martinos Center Phantom Resource 2018

Contact: Dr. Frank Zöllner last modified: 21.09.2020
to top of page