University of Heidelberg
Faculty of Medicine Mannheim
University Hospital Mannheim
News
These pages are still under constructions and will be available soon! Please check again later!
Note


If you have questions concerning a specific publication please use this form with subject 'information about publications' and giving the full citation in the message body.

Links
Home > Publications > Abstract >

Morphologic MR imaging with T1-weighted sequences for radiotherapy goal volume definition of intracranial tumors. Comparison with FLASH-Turbo-FLASH and SE sequences

H. Hawighorst, M. Knopp, J. Debus, G. Brix, R. Engenhart-Cabillic, L. Schad, M. Grandy, M. Essig and G. van Kaick

Radiologe, 37 (3), pp.243-250

INTRODUCTION: The goal of this study was to compare contrast-enhanced T1-weighted Flash and Turbo-Flash sequences with conventional spin-echo sequences as a basis for planning high-precision radiotherapy. METHODS: A total of 25 consecutive patients with different intracranial tumors and a disrupted blood-brain barrier were studied. T1-weighted Flash, Turbo-Flash and conventional spin-echo images were evaluated after controlled 30-s infusion of 0.1 mmol/kg body weight of Gd-DTPA. The evaluation of the three sequences included the measurement of the spinal- and contrast-to-noise ratios, the visual inspection of the tumors and artifacts, and the measurement of tumor size. RESULTS: The signal- and contrast-to-noise ratios were significantly (P < 0.05-0.01) lower for Flash and Turbo-Flash than for conventional spin-echo sequences. However, visual inspection of the contrast-enhancing tumors revealed in 23 and 24 of 25 lesions on Flash and Turbo-Flash images, respectively, good or very good tumor visibility when compared with conventional spin-echo images with a reduction of imaging time by a factor of 7-8. Flash and Turbo-Flash sequences were more prone to susceptibility artifacts, conventional spin-echo sequences more to pulsation artifacts in the posterior fossa. Tumor sizes were comparable in all three techniques. CONCLUSION: At present, conventional spin-echo images are superior to fast Flash and ultrafast Turbo-Flash sequences as a basis for accurate target volume definition in high-precision radiotherapy. However, fast Flash and Turbo-Flash images may be a practicable alternative to conventional spin-echo images for tumors in the posterior fossa or in patients unable to tolerate a stereotactic fixation device. Despite some limitations, Turbo-Flash sequences enable fast dynamic MR imaging combined with an acceptable morphology, which may be sufficient to target volume planning in high-precision radiotherapy.

Contact: Dr. Frank Zöllner last modified: 21.05.2019
to top of page