University of Heidelberg
Faculty of Medicine Mannheim
University Hospital Mannheim
These pages are still under constructions and will be available soon! Please check again later!

If you have questions concerning a specific publication please use this form with subject 'information about publications' and giving the full citation in the message body.

Home > Publications > Abstract >

Visualization of the distant dipolar field: A numerical study

S. Kirsch and P. Bachert

Concepts in Magnetic Resonance Part A, 34A (6), pp.357-364

The magnetization of liquid water in an external field generates an intrinsic magnetic field in the sample called the distant dipolar field (DDF). To visualize the spatial distribution of the DDF a numerical study was performed for the case of liquid-state 1H NMR at 7 T. 2D maps of the frequency offset caused by the DDF in pure water were calculated for homogenously magnetized spherical and cylindrical samples as well as for the case of a spatially modulated magnetization distribution occurring e.g., in CRAZED (Cosy Revamped by Asymmetric Z-Gradient Echo Detection) experiments. The calculation yielded DDF induced frequency offsets in the range of 0.58 Hz to 10.24 Hz inside the homogeneously magnetized cylinders, while DDF-induced frequency offsets le10-5 Hz were obtained inside the sphere. The calculated frequency offsets were in good agreement with analytical results available for a sphere and an infinitely long cylinder. In the case of a spatially modulated magnetization distribution, DDF-induced frequency offsets with maximum values of +0.83 Hz were obtained inside the sphere. The presented 2D maps of the DDF-induced frequency offset have tutorial character and may help to visualize this phenomenon in a direct manner. © 2009 Wiley Periodicals, Inc. Concepts Magn Reson Part A 34A:357-364, 2009.

Contact: Dr. Frank Zöllner last modified: 22.01.2019
to top of page