University of Heidelberg
Faculty of Medicine Mannheim
University Hospital Mannheim
News
These pages are still under constructions and will be available soon! Please check again later!
Note


If you have questions concerning a specific publication please use this form with subject 'information about publications' and giving the full citation in the message body.

Links
Home > Publications > Abstract >

Wavelet-based segmentation of renal compartments in DCE-MRI of human kidney: Initial results in patients and healthy volunteers

S. Li, F. Zöllner, A. Merrem, Y. Peng, J. Roervik, A. Lundervold and L. Schad

Comput Med Imag Grap, 36 (2), pp.108-118

Renal diseases can lead to kidney failure that requires life-long dialysis or renal transplantation. Early detection and treatment can prevent progression towards end stage renal disease. MRI has evolved into a standard examination for the assessment of the renal morphology and function. We propose a wavelet-based clustering to group the voxel time courses and thereby, to segment the renal compartments. This approach comprises (1) a nonparametric, discrete wavelet transform of the voxel time course, (2) thresholding of the wavelet coefficients using Stein's Unbiased Risk estimator, and (3) k-means clustering of the wavelet coefficients to segment the kidneys. Our method was applied to 3D dynamic contrast enhanced (DCE-) MRI data sets of human kidney in four healthy volunteers and three patients. On average, the renal cortex in the healthy volunteers could be segmented at 88\%, the medulla at 91\%, and the pelvis at 98\% accuracy. In the patient data, with aberrant voxel time courses, the segmentation was also feasible with good results for the kidney compartments. In conclusion wavelet based clustering of DCE-MRI of kidney is feasible and a valuable tool towards automated perfusion and glomerular filtration rate quantification.

Contact: Dr. Frank Zöllner last modified: 20.03.2019
to top of page