University of Heidelberg
Faculty of Medicine Mannheim
University Hospital Mannheim
These pages are still under constructions and will be available soon! Please check again later!

If you have questions concerning a specific publication please use this form with subject 'information about publications' and giving the full citation in the message body.

Collaborate Research Projects
Home > Publications > Abstract >

Three dimensional image correlation of CT, MR, and PET studies in radiotherapy treatment planning of brain tumors

L. Schad, R. Boesecke, W. Schlegel, G. Hartmann, V. Sturm, L. Strauss and W. Lorenz

J Comput Assist Tomogr, 11 (6), pp.948-954

A treatment planning system for stereotactic convergent beam irradiation of deeply localized brain tumors is reported. The treatment technique consists of several moving field irradiations in noncoplanar planes at a linear accelerator facility. Using collimated narrow beams, a high concentration of dose within small volumes with a dose gradient of 10-15\%/mm was obtained. The dose calculation was based on geometrical information of multiplanar CT or magnetic resonance (MR) imaging data. The patient's head was fixed in a stereotactic localization system, which is usable at CT, MR, and positron emission tomography (PET) installations. Special computer programs for correction of the geometrical MR distortions allowed a precise correlation of the different imaging modalities. The therapist can use combinations of CT, MR, and PET data for defining target volume. For instance, the superior soft tissue contrast of MR coupled with the metabolic features of PET may be a useful addition in the radiation treatment planning process. Furthermore, other features such as calculated dose distribution to critical structures can also be transferred from one set of imaging data to another and can be displayed as three-dimensional shaded structures.

Contact: Dr. Frank Zöllner last modified: 21.09.2020
to top of page