University of Heidelberg
Faculty of Medicine Mannheim
University Hospital Mannheim
These pages are still under constructions and will be available soon! Please check again later!

If you have questions concerning a specific publication please use this form with subject 'information about publications' and giving the full citation in the message body.

Collaborate Research Projects
Home > Publications > Abstract >

Silent echo-planar imaging for auditory FMRI

S. Schmitter, E. Diesch, M. Amann, A. Kroll, M. Moayer and L. Schad

Magn Reson Mater Phy, 21 (5), pp.317-325

INTRODUCTION: The effect of the acoustic scanner noise produced by gradient coil switching on the auditory evoked BOLD signal represents a well-known problem in auditory functional MRI (FMRI). In this paper, a new low-noise echo-planar imaging (EPI) sequence is presented that is optimized for auditory FMRI measurements. METHODS: The sequence produces a narrow-band acoustic frequency spectrum by using a sinusoidal readout echo train and a constant phase encoding gradient. This narrow band is adapted to the frequency response function of the MR scanner by varying the switching frequency of the sinusoidal readout gradient. RESULTS: Compared to a manufacturer-provided standard EPI sequence, the acoustic noise reduction amounts to up to 20 dBA. Using a simple block design paradigm contrasting presentation of a pure tone during ON blocks and "silence" (absence of the tone) during OFF blocks, the new low-noise sequence was evaluated and compared to the standard EPI sequence. Statistical parametric mapping (SPM) resulted in higher levels of significance of auditory activation for the low-noise sequence. DISCUSSION: These findings strongly suggest that the low-noise sequence may generate enhanced BOLD contrasts compared to the standard EPI sequences commonly used in FMRI.

Contact: Dr. Frank Zöllner last modified: 21.09.2020
to top of page