University of Heidelberg
Faculty of Medicine Mannheim
University Hospital Mannheim
Genauere MRT-Auswertungen für MS-Patienten durch Künstliche Intelligenz
Modellprojekt mit CKM Beteiligung im Rahmen des Innovationswettbewerbs "KI für KMU" soll die Behandlung von MS-Patienten verbessern more
CKM receives DFG funding for Project "Prediktion von Therapieansprechen und Outcome beim lokal fortgeschrittenen Rektum-Karzinom mittels Radiomics und Deep Learning: eine beispielhafte Anwendung für eine allgemein verwendbare, Deep Learning basierte Prozessierungs-Pipeline für die Bild-Klassifikation" read more.
Alena-Kathrin Schnurr presented on our research on AI in medical imaging @ Research Plus forum
read more

If you have questions concerning a specific publication please use this form with subject 'information about publications' and giving the full citation in the message body.

Collaborate Research Projects
Home > Publications > Abstract >

Tumor Tissue Analysis by Self Organizing Maps from combined DCE-/DSC-MRI data

F. Zöllner, M. Heilmann, C. Walczak, A. Volk and L. Schad

Proceedings of the 6th International Symposium on Image ans Signal Processing and Analysis,, pp.562-568

Self organizing maps are utilized to analyze tumor tissue from simultaneously acquired dynamic T1 and T2* magnetic resonance imaging measurements of five tumor-bearing mice. The method allowed for tumor segmention obtaining regions characterized by distinct perfusion patterns (i.e. T1 and T2* perfusion time curves). Compared to histopathological analysis, these regions comprise typical tumor areas like pre-necrotic or vascularized tissue. Furthermore, the detected regions showed differences in physiological parameters (Ktrans, ve) extracted by a pharmacokinetic model. In summary, tumor tissue analysis by self organizing maps is feasible and seems to be a valuable tool in model-free assessment of tumor physiology.

Contact: Prof. Dr. Frank Zöllner last modified: 30.11.2020
to top of page