University of Heidelberg
Faculty of Medicine Mannheim
University Hospital Mannheim
News
Keine Gesundheitsgefährdung für Frauen mit implantierten kupferhaltigen Verhütungsmitteln bei der MRT,
read more
CKM @ MEET and CODE,
read more
Job offers now collected in new page on website
Links

Multiphase 3D Contrast Enhanced Renal MR Angiography: A Comparison between Cartesian and Spiral Readout

M. Amann, F. Floemer, M. Bock, S. O. Schoenberg, L. R. Schad
Abt. Biophysik und Medizinische Strahlenphysik, Deutsches Krebsforschungszentrum (dkfz), Heidelberg,Germany

Introduction

3D Contrast enhanced Magnetic Resonance Angiography (3D CE-MRA) offers an adequate morphological representation of the renal vasculature in a minimal invasive way [1]. To obtain pure arterio- and venograms, multiphase angiography has been established [2]. The short acquisition time per single phase leads to lower spatial resolution and anatomic coverage.
Spiral MRI with its efficient sampling of k-space is a promising technique to increase resolution without increasing acquistion time. Additionally, spiral MRI is less sensitive to flow artifacts due to the attainable short echo times and the intrinsic compensation of higher gradient moments [3].
The purpose of this work was to compare a standard multi-phase 3D CE-MRA technique [4] with a sequence using inplane spiral readout with respect to the attainable reso-lution at comparable acquistion time.

Materials and Methods

The multiphase 3D CE-MRA of the renal arteries were carried out in seven volunteers with a 1.5 T whole body scanner (Magnetom Vision, Siemens, Germany). For each volunteer a contrast bolus of 0.2 mmol/kg bodyweight was administred (Magnevist?) by automatic infu-sion (Tomojet CAI, Doltron). All measurements were performed with a phased array torso coil.
With the spiral MR sequence a conventional phase-encoding gradient in partition direction was combined with an in-plane spiral readout [5]. The spiral trajectories were slew rate optimized with respect to the chosen number of interleaves and to the selected field-of-view (FOV) [6]. Per partition, 16 inter-leaved spirals with a duration of 15.36 ms were used. For each spiral, 2048 data points were sampled. The other parameters were: TR/ TE/ a = 19.0 ms/ 1.3 ms/ 60. A postprocessing deblurring algorithm was used for the spiral raw data to correct the effects of B0 inhomogeneities [7].
The conventional MRA sequence was a 3D FLASH with TR/ TE/ a = 3.2 ms/ 1.2 ms/ 30 and asym-metric k-space sampling in readout- and phase-en-coding direction. In both sequences the same asymmetric k-space sampling in partition direction was used. For a 80 mm coronal slab with 44 interpolated partions an acquistion time of 6 s (spiral MRI) or 7 s (FLASH) were obtained for a single phase. Five phases were acquired subsequently. With the 3D FLASH a nominal resolution of 1.94 x 1.37 mm2 was achieved at a field-of-view (FOV) of 260x350 mm2. With the spiral technique, an isotropic reso-lu-tion of 1.39 x 1.39 mm2 at a FOV of 350x350 mm2 was attained.

Results and Conclusion

Despite shorter acquisition time, the spiral 3D CE-MRA attains higher resolution than the standard technique. Fig. 1 shows the maximum intensity projection (MIP) at the arterial phase. The FLASH arteriogram (top) shows step artifacts (white arrow) caused by the reduced resolu-tion in phase-encoding direction (left to right).
In this study we demonstrated the efficiency of spiral read-out for multiphase 3D CE-MRA. In spite of the higher ef-fort for reconstruction and correction of the raw data, the spiral technique is a promising tool for further reduction of acquisition time without losing resolution. The focus of future work will now be the application of spiral 3D CE-MRA to pathological processes.
 

Fig.1:
Arteriograms of the renal vessels of a healthy volunteer with spiral in-plane readout (top) and conventional cartesian readout (bottom). 44 interpolated parti-tions of 1.8 mm were acquired in both cases. The nominal in-plane resolution of the spiral sequence was 1.39 x 1.39 mm2, the resolution of the FLASH sequence was 1.94 x 1.37 mm2. The reduced resolution of the FLASH sequence causes step artefacts (white arrow). Some differences in image contrast can be explained by the different timing of the acquisitions.

References

1. Prince M. R., JMRI 8(3), 511-516, 1998
2. Schoenberg S. O. et al., JMRI, 10(3), 314-316, 1999
3. Van Tyen R., Saloner D., 6th ISMRM, 779, 1998
4. Schoenberg S. O. et al., Radiology 211(3), 667-679, 1999
5. Amann M., Bock  M., Schad L. R., 7th ISMRM, 158, 1999
6. King K., Foo T., Crawford C., MRM 34, 156-160, 1995
7. Noll D. C. et al., MRM 25, 319-333, 1992
Contact: Dr. Frank Zöllner last modified: 16.12.2010
to top of page