Sie befinden sich hier

Inhalt

Multinuclear NMR

Research profile

In conventional magnetic resonance imaging (MRI) the measured signal arises from the protons of tissue water molecules.
Beyond hydrogen (1H) molecules, other nuclei (X-nuclei) may be used for MRI.
Our group focuses on sodium (23Na) and chlorine (35Cl) imaging and sepctroscopy. We perform preclinical as well as clinical research.

Current preclinical research projects

In our preclinical studies, we perform in vitro 1H and 23Na spectroscopy using an MR-compatible bioreactor to

  • Monitor cellular heat shock response by 1H chemical exchange saturation transfer (CEST)
  • Acquire 23Na triple-quantum spectra with time-proportional phase incrementation (TQTPPI)
  • analyze the influence of protein properties on the TQ signal

Furthermore, we perform in vivo 23Na and 35Cl imaging in rodents to

  • Quantify Na+ and Cl+ concentration in the kidney and in animal stroke models
  • Acquire B1 reference maps in volume and surface coil setups
  • Obtain localized single- and triple-quantum images and relaxation time maps

Current clinical research projects

The clinical research focuses on the quantification of tissue sodium concentration and is investigating 23Na MRI at different pathologies. We conduct research on new imaging and image acquisition techniques.

  • Tissue sodium concentration (TSC) quantification and exploring different referencing techniques
  • Application of convolutional neural Networks for the data acquisition time reduction and SNR improvement
  • Advancing 23Na multi-quantum coherences MRI by sequence optimization
  • Implementation of advanced reconstruction techniques

We are currently conducting multiple studies with clinical cooperation partners, investigating different pathologies, e.g.

  • Ischemic stroke
  • Brain tumors and metastases
  • Multiple Sclerosis (MS)
  • Dementia
  • Prostate carcinoma

Collaborations

Recent publications

  • A. Adlung, N.K. Paschke, A. Golla, D. Bauer, S. Mohamed, M. Samartzi, M. Fatar, E. Neumaier Probst, F. Zöllner, and L.R. Schad
    23Na MRI in ischemic stroke: Acquisition time reduction using postprocessing with convolutional neural networks.
    NMR Biomed, 34 (4), p.e4474 (2021).
  • A. Adlung, M. Samartzi, L.R. Schad, E. Neumaier Probst, M. Fatar and S. A. Mohamed.
    Tissue Sodium Concentration within White Matter Correlates with the Extent of Small Vessel Disease.
    Cerebrovasc Dis, 50, pp.347-355 (2021).
  • C. Weber, K. Nagel, A. Ebert, C. Roßmanith, N. Paschke, A. Adlung, M. Platten, L.R. Schad, A. Gass and P. Eisele.
    Diffusely appearing white matter in multiple sclerosis: insights from sodium (23Na) MRI.
    Multiple Sclerosis and Related Disorders, 49, p.102752 (2021).
  • S. Mohamed, K. Herrmann, A. Adlung, N. Paschke, L. Hausner, L. Frölich, L. Schad, C. Groden and H. Kerl.
    Evaluation of Sodium (23Na) MR-imaging as a Biomarker and Predictor for Neurodegenerative Changes in Patients With Alzheimer Disease.
    In Vivo, 35 (1), pp.429-435 (2021).
  • M.A.U. Hoesl, L.R. Schad, and S. Rapacchi.
    Effcient (23) Na triple-quantum signal imaging on clinical scanners: Cartesian imaging of single and triple-quantum (23) Na (CRISTINA).
    Magnetic Resonance in Medicine, 84 (5), pp. 2412–2428 (2020).
  • R. Hu, D. Kleimaier, M. Malzacher, M.A.U. Hoesl, N.K. Paschke, and L.R. .
    X-nuclei imaging: Current state, technical challenges, and future directions.
    J Magn Reson Imaging, 51 (2), pp. 355–376 (2020).
  • D. Kleimaier, S. Goerke, C. Nies, M. Zaiss, P. Kunz, P. Bachert, M.E. Ladd, E. Gottwald, and L.R. Schad
    The cellular heat shock response monitored by chemical exchange saturation transfer MRI.
    Sci Rep, 10 (1), p. 11118 (2020)
  • S.A. Mohamed, A. Adlung, A.M. Ruder, M.A.U. Hoesl, L.R. Schad, C. Groden, F.A. Giordano and E. Neumaier Probst.
    MRI Detection of Changes in Tissue Sodium Concentration in Brain Metastases after Stereotactic Radiosurgery: A Feasibility Study.
    Journal of Neuroimaging, 31 (2), pp.297-305 (2020).
  • D. Kleimaier, V. Schepkin, C. Nies, E. Gottwald, and L.R. Schad
    Intracellular sodium changes in cancer cells using a microcavity array-based bioreactor system and sodium triple-quantum MR signal.
    Processes, 8 (10), p. 1267 (2020)
  • D. Kleimaier, V. Schepkin, R. Hu, and L.R. Schad.
    Protein conformational changes affect the sodium triple-quantum MR signal.
    NMR Biomed, 33 (10), p.e4367 (2020).
  • M.A.U. Hoesl, D. Kleimaier, R. Hu, M. Malzacher, C. Nies, E. Gottwald, and L.R. Schad
    (23) Na Triple-quantum signal of in vitro human liver cells, liposomes, and nanoparticles: Cell viability assessment vs. separation of intra- and extracellular signal.
    J Magn Reson Imaging, 50 (2), pp. 435–444. (2019).
  • M. Malzacher, J. Chacon-Caldera, N.K. Paschke and L.R. Schad.
    Feasibility study of a double resonant (1 H/ 23Na) abdominal RF setup at 3T.
    Z Med Phys, 29 (4), pp.359-367 (2019).
  • M. Malzacher, J. Chacon-Caldera, N.K. Paschke and L.R. Schad.
    Feasibility study of a double resonant 8-channel 1H/ 8-channel 23Na receive-only head coil at 3 Tesla.
    Magn Reson Imaging, 59, pp.97-104 (2019).

Kontextspalte